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Abstract

We consider functionsf ∈ AC(D) on a convex polygonD ⊂ C and their regularity in terms
of Tamrazov’s moduli of smoothness. Using the relation between Fourier and Leont’ev coefficients
given in (CMFT 1(1) (2001) 193) we prove direct approximation theorems of Jackson type for the
Dirichlet expansion

f (z) ∼
∑
�∈�

�f (�)
e�z

L′(�) ,

whereL(z)=∑N
k=1dke

akz is a quasipolynomial with respect to the verticesa1, . . . , aN of D and�
its set of zeros. We show by an example that our results improve Mel’nik’s estimates in (Ukrainian
Math. J. 40(4) (1988) 382) on the rate of convergence.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let D be an open convex polygon with vertices at the pointsa1, . . . , aN , N�3,D its
closure and�D = D \D the boundary ofD. We assume 0∈ D.
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By AC(D) we denote the space of all functionsf holomorphic inD and continuous on
D with finite norm of uniform convergence‖f ‖AC(D) = maxz∈D |f (z)| < ∞. The class

ACq(D) contains all functionsf holomorphic inD with f (q) ∈ AC(D).
Consider the quasipolynomialL(z) = ∑N

k=1 dke
akz, wheredk ∈ C\{0} andak as above,

k = 1, . . . , N. By � we denote the set of zeros�m,m ∈ N, of the quasipolynomialL.
We expand functionsf ∈ AC(D) with respect to the familyE(�) := {e�mz}m∈N into a

series of complex exponentials, the so-called Dirichlet series

f (z) ∼
∑
m∈N

�f (�m)
e�mz

L′(�m)
, (1)

where

�f (�m) =
N∑
k=1

dke
ak�m

∫ ak
aj

f (�)e−�m� d� (2)

are the Leont’ev coefficients. The indexing in series (1) is chosen such that|�1|� |�2|� · · ·,
in (2) we fix j ∈ {1, . . . , N} arbitrarily. Many important results on these series are due to
Leont’ev[5].
Dzjadyk showed in[3] (with dk = 1 for allk = 1, . . . , N, but this is inessential) that series

(1) converges absolutely for allz ∈ D and uniformly tof for every functionf ∈ AC(D)
which satisfies

N∑
j=1

f (aj ) = 0 and
∫ c
0

�(t)
t
dt <∞, c = const> 0.

Here�(t) = �1,D(f, t)∞ = supz,w∈D,|z−w|<t |f (z)− f (w)| denotes the first modulus of

continuity off onD.
In this paper, we consider functionsf ∈ AC(D) with certain regularity conditions and

the rate of approximation of their Dirichlet expansion. Results for first moduli were proved
by Mel’nik [9].We extend his results to moduli of arbitrary order using Tamrazov’s moduli
of smoothness and the relation between Leont’ev and Fourier coefficients proved in[4].
The following section gives a closer look at the zeros of the quasipolynomialL. The next

section introduces the notion of Tamrazov’s moduli. In Section4 we give Mel’nik’s result
on the order of approximation with Dirichlet series for first moduli of continuity and extend
his theorem to moduli of smoothness of arbitrary order. The respective proofs are presented
in Section5. The last section gives an example on the scope of our result.

2. The set of zeros of the quasipolynomialL

First let us have a closer look at the quasipolynomial

L(z) =
N∑
k=1

dke
akz,
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wheredk ∈ C \ {0} andak as above,k = 1, . . . , N. For the set of zeros� of the quasipoly-
nomialL the following results are well known [5 Chapter 1, Section 2, 6]:

1. The zeros�(j)n of Lwith |�(j)n | > C for sufficient largeChave the form�(j)n = �̃
(j)

n +�(j)n ,

wherẽ�
(j)

n = 2�ni
aj+1−aj + qj ei�j and|�(j)n |�e−an. Here 0< a = const., j = 1, . . . , N,

n > n0 andaN+1 := a1.Theparameters�j andqj aregivenbye
qj (aj+1−aj )ei�j = − dj

dj+1
,

wheredN+1 := d1. Hence these zeros are simple. The set of zeros� can be represented
in the form

� = {�n}n=1,...,n0 ∪
 N⋃
j=1

{�(j)n }n=n(j),n(j)+1,...

 .
2. There are positive constantsA1 andc1 such that for alln�n(j) and all	 ∈ [ aj , ak]

we have|e−�(j)n (	−ak)−e−�̃
(j)

n (	−ak)|�A1 ·e−c1n. Here[ aj , ak] denotes the straight-line
closed interval between the verticesaj andak in the complex plane.

3. There is a constantc2 > 0 such that for allk ∈ N0 there exists a positive constantA(k)
with ∣∣∣∣∣ (�(j)n )ke�

(j)
n z

L′(�(j)n )
− (−1)nBj (̃�

(j)

n )
ke

�̃
(j)

n

(
z− aj+1+aj

2

)∣∣∣∣∣ �A(k)e−c2n
for all n > n0. Here allBj �= 0 are constants,j = 1, . . . , N. This inequality is true for
all z ∈ D.

For simplicity reasonswe assume that all zeros ofL are simple.We shall use these properties
of � to estimate the exponentials in partial series.

3. Tamrazov’s moduli of smoothness

To get a sophisticated view on the regularity of functions inAC(D)Tamrazov introduced
in [13] appropriate moduli of smoothness. Let	 ∈ D, r ∈ N, � > 0 andA > 0. Let
U(	, �) := {z ∈ C : |z − 	|��} be the closed�-ball with center	. We denote by
T (D, 	, r, �, A) the set of all vectorsz = (z1, . . . , zr ) ∈ Cr with

(i) zi ∈ D ∩ U(	, �) for all i = 1, . . . , r, and
(ii) |zi − zj |�A� for all i �= j , i, j = 1, . . . , r.

If there is no vector satisfying these conditionswe setT (D, 	, r, �, A) := ∅. Nevertheless
forA = 2−r there exists� > 0 withT (D, 	, r, �, A) �= ∅. LetT1 = T (D, 	, r+1,�, 2−r ).
LetL(z, f, z1, . . . , zr ) be the polynomial inzof degree at mostr − 1 which interpolatesf
at the pointsz1, . . . , zr . Therth modulus off is defined by

�r (f, t) = �r,D(f, t)∞
:= sup

0<�� t
sup
	∈D

sup
z∈T1

z=(z0,...,zr )

|f (z0)− L(z0, f, z1, . . . , zr )|. (3)
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Here the supremum over the empty set is defined as zero. Modulus (3) is equivalent to the
best-approximation with algebraic polynomials[16,10]

�̃r (f, t) = �̃r,D(f, t)∞ := sup
0<�� t

sup
	∈D

inf
Pr−1∈
r−1

‖f − Pr−1‖AC(D∩U(	,�)), (4)

where
r−1 denotes the vector space of all algebraic polynomials of degree at mostr − 1.
For our purposes an easy estimation of moduli (3) and (4) is needed. Tamrazov defined

normal majorants� with exponent�: These are bounded non-decreasing functions� :
] 0,∞ [ → ]0,∞ [ such that for fixed�1 and an exponent��0 the following normality
condition holds:

�(t�)�t��(�)

for all � > 0, t > 1 [12, Section 1].
Both moduli defined above are normal[14,15, Theorem 1], i.e.,

�r,D(f, t�)∞ �C · t r · �r,D(f, �)∞ and �̃r,D(f, t�)∞ �C̃ · t r · �̃r,D(f, �)∞,

whereC, C̃ > 0 depend onr and the polygonD only. Thus normality is preserved while
estimating with normal majorants.
With these moduli and majorants we define classes of regularity: ByAH

�
r (D) we

denote the class of all functionsf ∈ AC(D) with �r,D(f, t)�const. · �(t) and by

AWqH
�
r (D), q ∈ N, the class of functionsf regular onD, such thatf (q) ∈ AH�

r (D). We
setAW0H

�
r (D) ≡ AH�

r (D). For intervalsI we just writeH�
r (I ) resp.WqH

�
r (I ).

We shall use these moduli to state our results in Section4. Their normality property is
essential in Theorem3 [4].

4. Direct approximation theorems

Mel’nik established in[9] a direct theorem on the approximation of functions regular in
D and continuous inD by partial series of (1) analogous to the well-known approximation
theorems of periodic functions by trigonometric series:

Theorem 1(Mel’nik [9, Thm. 1]). Letf ∈ AWqH�
1 (D), q ∈ N0, and a modulus of con-

tinuity � = �1,D satisfy the Zygmund condition∫ h
0

�(f (q), t)
t

dt + h ·
∫ 2�

h

�(f (q), t)
t2

dt�c · �(f (q), h)

for all 0< h < 2� and some positive constant c.Let

N∑
k=1

dkf
(s)(ak) = 0 for all 0�s�q.



B. Forster / Journal of Approximation Theory 132 (2005) 1–14 5

Letn = (n1, . . . , nN) ∈ NN be a multi-index.Consider the corresponding quasipolynomial
of Jackson’s type

Pq,n(f )(z) :=
n0∑
m=1

�f (�m)
e�mz

L′(�m)
+

N∑
j=1

nj∑
m=n(j)

(1− xq+1
nj ,m)�f (�

(j)
m )

e�
(j)
m z

L′(�(j)m )
.

The coefficientsxm = xnj ,m are determined by the Jackson kernel through the relations

xm = 1− Jm
and

3

2Mj(2M2
j + 1)

(
sin(Mj t/2)

sin(t/2)

)4

= J0

2
+

nj∑
m=1

Jm cos(mt),

whereMj = �nj2 � + 1.
Then

‖f − Pq,n(f )‖AC(D)�const.
N∑
k=1

1

n
q
k

· �1,D

(
f,

1

nk

)
∞
.

For the proof see[9].
Our new result is the extension ofMel’nik’sTheorem1to arbitrarymoduli of smoothness.

Let 1�j�N be fixed andr ∈ N. Let f ∈ AC(D) haver − 1 existing derivatives at the
verticesak, k = 1, . . . , N, of the polygon. Consider fork �= j + 1 the polynomialPj,k of
degree at mostr that interpolatesf at the verticesaj undak andf ′,…,f(r−1) at the vertex
ak. For k= j + 1 let the polynomialPj,j+1 interpolatef, f ′,…,f(r−1) at both verticesaj
andaj+1. We define

�r,j (f, h) :=
N∑
k=1
k �=j


∫ h

0

∣∣∣f (ak + aj−ak
2� u

)
− Pj,k

(
ak + aj−ak

2� u
)∣∣∣

u
du

+ hr ·
∫ 2�

h

∣∣∣f (ak + aj−ak
2� u

)
− Pj,k

(
ak + aj−ak

2� u
)∣∣∣

ur+1 du


and

�r (f, h) := max
1� j�N

�r,j (f, h).

For the approximation off ∈ AC(D) we use partial Dirichlet series weighted with the
generalized Jackson kernel

Kn,r (t) := �n,r

(
sinMt/2

t/2

)2r

= Jn,r,0

2
+

n∑
k=1

Jn,r,k coskt,
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wheren ∈ N, r�2,M := �n
r
� + 1, and�n,r is chosen such that

1

2�

∫ 2�

0
Kn,r (t) dt = 1.

Kn,r is an even non-negative trigonometric polynomial of degree at mostn. We denote
byPq,n,r (f ) the quasipolynomial of Jackson’s type

Pq,n,r (f )(z) :=
n0∑
m=1

�f (�m) · e
�mz

L′(�m)

+
N∑
j=1

nj∑
m=n(j)

(1− xq+1
nj ,r,m)�f (�

(j)
m )

e�
(j)
m z

L′(�(j)m )
,

with

xnj ,r,m =
r∑
p=0

(−1)p
(
r

p

)
Jnj ,r,mp.

Theorem 2. Let f ∈ AH�r
r (D), r�2, and �r be a normal majorant with exponent r

satisfying the Stechkin condition∫ h
0

�r (t)
t
dt + hr ·

∫ 2�

h

�r (t)
tr+1 dt � c · �r (h) (5)

for all 0 < h < 2�
r

and a positive constant c.Letf (r−1) be continuous in a neighborhood
of the verticesak, k = 1, . . . , N, and

N∑
k=1

dk f
(s)(ak) = 0, 0�s�r − 1.

Letn = (n1, . . . , nN) ∈ NN be multi-index.
Then for the quasipolynomialP0,n,r (f ) weighted with the generalized Jackson kernel

and for some normal majorant�r with exponent r

‖f − P0,n,r (f )‖AC(D)�const. ·
N∑
k=1

�r

(
1

nk

)
,

where

�r (h)�const. · {�r (h)+ �r (f, h)
}
. (6)

For differentiable functions it follows:

Corollary 1. Let f ∈ AWqH
�r
r (D), q ∈ N0, r�2, and �r be a normal majorant

with exponent r satisfying the Stechkin condition(5). Let f (r−1+q) be continuous in a
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neighborhood of the verticesak, k = 1, . . . , N, and

N∑
k=1

dkf
(s)(ak) = 0 for 0�s�r − 1+ q.

Then for approximation with the quasipolynomialPq,n,r (f ) weighted with the generalized
Jackson kernel

‖f − Pq,n,r (f )‖AC(D)�const.
N∑
k=1

1

(nk)q
· �r

(
1

nk

)
,

where�r—a normal majorant with exponent r—satisfies inequality(6).

In Mel’nik’s caser = 1 we get a stronger result, see Remark1; namely, forq �= 0 our
proof allows to delete the term∫ h

0

�(f (q), t)
t

dt

in the Zygmund condition in Theorem1.

5. Proofs of Theorem 2 and Corollary 1

First we have closer look on the Leont’ev coefficients and their relation to Fourier coef-
ficients. We use these properties for the subsequent proofs.

5.1. Leont’ev and Fourier coefficients

In [7], Mel’nik gave an important result establishing the relation between Fourier and
Leont’ev coefficients for functionsf ∈ AC(D) and their first moduli of continuity. In[4]
we extend his result to moduli of arbitrary order.We use this relation to reduce the Dirichlet
series (1) to well-known Fourier series. Subsequently we can apply direct approximation
theorems for Fourier series and deduce our new results.

Theorem 3(Forster[4]). Let �r be some normal majorant with exponent r and let�r (t)
t

be integrable on[ 0, � ], 0< � < 2�. Letf ∈ AH�r
r (D) with �r (f, h) <∞ and

N∑
k=1

dkf
(s)(ak) = 0 for all 0�s < r.

Then the Leont’ev coefficients�f (�
(j)
n ),n�n(j), j = 1, . . . , N, are the Fourier coefficients

of some2�-periodic function of classH�r
r ([ 0, 2� [) where

�r (h)�const.

{∫ h
0

�r (u)
u

du+ hr
∫ 2�

h

�r (u)
ur+1 du+ �r (f, h)

}
.

For the proof of Corollary1 in Section5.3we need a supplementary lemma:
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Lemma 1 (Mel’nik [8]). Letf ∈ ACq(D), q ∈ N, and
N∑
k=1

dkf
(s)(ak) = 0 for s = 0, . . . , q − 1.

Then the coefficients of the Dirichlet series of f have the form

�f (�m) = �f (q) (�m)

(�m)q
.

This can be shown using integration by parts.
We now have all means to prove the results given in Section4.

5.2. Proof of Theorem 2

We decompose the Dirichlet series off with respect to property 3 of the zeros ofL
mentioned in Section2:

f (z) =

n0∑
m=1

�f (�m)
e�mz

L′(�m)

+
N∑
j=1

∞∑
m=n(j)

�f (�
(j)
m )

(
e�
(j)
m z

L′(�(j)m )
− (−1)mBje

�̃
(j)

m

(
z− aj+1+aj

2

))
+

N∑
j=1

Bj

∞∑
m=n(j)

�f (�
(j)
m )(−1)me

�̃
(j)

m

(
z− aj+1−aj

2

)

=: �(z)+
N∑
j=1

�j (z).

Due to the absolute convergence of the Dirichlet series and estimate 3 we also have
absolute convergence of�(z) and�j (z) for all z ∈ D.
The same decomposition is used for the quasipolynomialP0,n,r (f ):

P0,n,r (f )(z)

=

n0∑
m=1

�f (�m)
e�mz

L′(�m)
+

N∑
j=1

nj∑
m=n(j)

(1− xnj ,r,m)�f (�(j)m )

×
(
e�
(j)
m z

L′(�(j)m )
− (−1)mBje

�̃
(j)

m

(
z− aj+1+aj

2

))}

+
N∑
j=1

Bj

nj∑
m=n(j)

(1− xnj ,r,m)�f (�(j)m )(−1)me
�̃
(j)

m

(
z− aj+1−aj

2

)

=: pn(z)+
N∑
j=1

pj,nj (z).
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We define

Fj (w) =
∞∑

m=n(j)
�f (�

(j)
m )w

m (7)

and


j,nj (w) =
nj∑

m=n(j)
(1− xnj ,r,m)�f (�(j)m )wm.

With property 1 of Section2 we write

�j (z)=Bj
∞∑

m=n(j)
�f (�

(j)
m )(−1)me

(
2�mi

aj+1−aj +qj ei�j
)(
z− aj+1+aj

2

)

=Bjeqj e
i�j
(
z− aj+1+aj

2

) ∞∑
m=n(j)

�f (�
(j)
m )e

�mie
2�mi

aj+1−aj
(
z− aj+1+aj

2

)

=Bjeqj e
i�j (z−aj )e−qj e

i�j
aj+1−aj

2

∞∑
m=n(j)

�f (�
(j)
m )e

2�mi
aj+1−aj (z−aj )

=Bjeqj e
i�j (z−aj )e−qj e

i�j
aj+1−aj

2 Fj

(
e

2�i
aj+1−aj (z−aj )

)
and

pj,nj (z) = Bje
qj e

i�j (z−aj )e−qj e
i�j

aj+1−aj
2 
j,nj

(
e

2�i
aj+1−aj (z−aj )

)
. (8)

With (5), (7) and Theorem3 we deduceFj (ei�) ∈ H�r
r ([ 0, 2� ]) (compare with[1]).

Hence for the approximation with the generalized Jackson kernel we obtain by Stechkin’s
theorem[11, Theorem 11],[2, Chapter 7, Theorem 2.3]

|Fj (w)− 
j,nj (w)|�const. · �r
(

1

nj

)
for |w| = 1.

Fj (w)−
j,nj (w) is holomorphicon{w : |w| < 1}.Thus this function reaches itsmaximum
on the boundary of this domain. Hence

|Fj (w)− 
j,nj (w)|�const. · �r
(

1

nj

)
for |w|�1.

The estimates|e2�i
z−aj

aj+1−aj |�1 for all z ∈ D and |eqj ei�j (z−aj )|�const. for all z ∈ D
lead to

|�j (z)− pj,nj (z)|�const. · �r
(

1

nj

)
for all z ∈ D.
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Nowwe consider the remaining term�(z)−pn(z).With property 3 in Section2we infer

|�(z)− pn(z)|

=
∣∣∣∣∣
N∑
j=1

∞∑
m=nj+1

�f (�
(j)
m )

(
e�
(j)
m z

L′(�(j)m )
− (−1)mBje

�̃
(j)

m

(
z− aj+1+aj

2

))

+
N∑
j=1

nj∑
m=n(j)

xnj ,r,m �f (�
(j)
m )

(
e�
(j)
m z

L′(�(j)m )
− (−1)mBje

�̃
(j)

m

(
z− aj+1+aj

2

)) ∣∣∣∣∣
�

N∑
j=1

∞∑
m=nj+1

|�f (�(j)m )|A(0)e−c2m

+
N∑
j=1

nj∑
m=n(j)

|xnj ,r,m| |�f (�(j)m )|A(0)e−c2m.

It is

xnj ,r,m = O
(
mr

nrj

)
(9)

for nj → ∞, and thus for allz ∈ D and some appropriate constantc > 0

|�(z)− pn(z)| � const.
N∑
j=1

(
e−cnj + 1

nrj

)

� const.
N∑
j=1

�r

(
1

nj

)
.

This proves Theorem2.

5.3. Proof of Corollary 1

We carry out an analogous decomposition as in the proof of Theorem2. FromTheorem3,
Lemma1 and (5)[1] we inferFj (ei�) ∈ WqH�r

r ([ 0, 2� ]). Hence for the approximation
with the generalized Jackson kernel

|Fj (w)− 
j,nj (w)|�const.
1

n
q
j

�r

(
1

nj

)
for |w|�1,

becauseFj (w) − 
j,nj (w) attains the maximum on the boundary of the domain{w :
|w|�1}. Thus

|�j (z)− pj,nj (z)|�const.
1

n
q
j

�r

(
1

nj

)
for all z ∈ D.
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With property 3 of Section2 and Eq. (9) we infer

|�(z)− pn(z)|

=
∣∣∣∣∣
N∑
j=1

∞∑
m=nj+1

�f (�
(j)
m )

(
e�
(j)
m z

L′(�(j)m )
− (−1)mBje

�̃
(j)

m

(
z− aj+1+aj

2

))

+
N∑
j=1

nj∑
m=n(j)

x
q+1
nj ,r,m �f (�

(j)
m )

(
e�
(j)
m z

L′(�(j)m )
− (−1)mBje

�̃
(j)

m

(
z− aj+1+aj

2

)) ∣∣∣∣∣
�

N∑
j=1

∞∑
m=nj+1

|�f (�(j)m )|A(0)e−c2m

+
N∑
j=1

nj∑
m=n(j)

|xnj ,r,m|q+1 |�f (�(j)m )|A(0)e−c2m

�const.
N∑
j=1

e−cnj + 1

n
r(q+1)
j


�const.

N∑
j=1

�r

(
1

nj

)

for some constantc > 0, and the claim is proved.

Remark 1. The proof of Theorem1 can be deduced as a special case of the proofs above.
Moreover, letf ∈ AC(r−1)(D), r > 1. Let � : [0, 1 ] → [ ak, aj ], �(t) = aj − (1−

t)(aj − ak), be a continuous parametrization of the straight-line interval[ ak, aj ]. Then for
k �= j + 1

(f − Pj,k) ◦ �(u)

=
∫ u
0

∫ u1
0
. . .

∫ ur−2

0
(f ◦ �)(r−1)(v)− (f ◦ �)(r−1)(0) dv dur−2 . . . du1

−ur
∫ 1

0

∫ u1
0
. . .

∫ ur−2

0
(f ◦ �)(r−1)(v)

−(f ◦ �)(r−1)(0) dv dur−2 . . . du1 (10)

and fork = j + 1

(f − Pj,j+1) ◦ �(u)

=
∫ u
0

∫ u1
0
. . .

∫ ur−2

0
(f ◦ �)(r−1)(v)− (f ◦ �)(r−1)(0) dv dur−2 . . . du1

−ur
∫ 1

0

∫ u1
0
. . .

∫ ur−2

0
(f ◦ �)(r−1)(v)− (f ◦ �)(r−1)(0) dv dur−2 . . . du1

−ur(u− 1)Qr−1(u) (11)
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for some polynomialQr−1 of degreer − 1. Thus in both cases

|(f − Pj,k) ◦ �(u)|�const.ur−1�1(f
(r−1), u),

and

�r (f, h) � const.

{∫ h
0

ur−1�1(f
(r−1), u)

u
du+ hr

∫ 2�

h

ur−1�1(f
(r−1), u)

ur+1 du

}

� const.hr
∫ 2�

h

�1(f
(r−1), u)

u2
du.

Thus Theorem1 follows from Theorem2 and by the inequality�r (f, u)� const.ur−1

�1(f
(r−1), u).

6. Example

Consider the function

g(z) = (z+ 1) ln

(
1

z+ 1

)

on the squareD ⊂ C with vertices−1+ i, −1− i, 1− i and 1+ i. Then

g′(z) = ln

(
1

z+ 1

)
− 1.

The derivative has a logarithmic branch point atz = −1 but is continuous at the four vertices
(see the absolute values of both functions in Fig.1).
By direct calculation we see�1,D(g, h)∞ = O(h ln 1

h
) for h → 0. Thus�1,D(g, h)

does not satisfy Zygmund’s condition and Mel’nik’s Theorem1 cannot be applied.
Considering the second moduli of smoothness we get�2,D(g, h)∞ = O(h) and

�2(g, h) = O(h) for h → 0, and Stechkin’s condition is complied. Applying our new
Theorem2we obtain

‖g − P0,n,2(g)‖AC(D) = O
(
�2,D

(
g,

1

n∗

)
+ �2

(
g,

1

n∗

))
= O

(
1

n∗

)

for n∗ → ∞. Heren∗ = min{n1, . . . , nN } denotes the minimal component of the multi-
index n = (n1, . . . , nN) ∈ NN . This shows that Theorem2 sharpens the results on the
order of approximation with quasipolynomials of Jackson’s type.
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Fig. 1. (a) Absolute value of the functiong(z) = (z + 1) ln
(

1
z+1

)
on the squareD. (b) Absolute value of its

derivativeg′ onD with a logarithmic branch point atz = −1.
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